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An Observation on the Effect of Fluctuations 
Far from Equilibrium: The Lotka-Volterra Model 
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Spontaneous  fluctuations in the Lotka-Vol te r ra  model  of  chemical reac- 
tions are known  to grow in an unbounded  way when species held in excess 
are neglected. This result is obtained in a simple way using generalized 
fluctuation-dissipation principles but  appears  to be an  artifact of  ignoring 
fluctuations in the variables that  are held fixed. When  fluctuations in the 
other  concentrat ions  are included in the model,  the spontaneous  fluctua- 
t ions become bounded.  
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1. I N T R O D U C T I O N  

Spontaneous fluctuations in systems far from equilibrium may be qualita- 
tively quite different from those near equilibrium. An example of  this is 
provided by the Lotka-Volterra  equations, which have been used as a model 
of  both coupled chemical reactions and ecological competition. ~1~ When 
fluctuations in this model are treated by the birth and death (master equation) 
formalism, ~2'3~ it is found that near the steady state deviations from the 
average grow in an unbounded way. In this sense the model is unstable to 
spontaneous fluctuations. This is somewhat perplexing since the averages 
f rom the mass action rate law are stable in the Liapunov sense that con- 
centrations which are originally close to the steady state remain close to the 
steady state. 

The purpose of this note is to understand the instability with respect to 
spontaneous fluctuations. The work is based on generalized fluctuation- 
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dissipation principles ~4~ which are known to agree with the macroscopic 
limit of  the master equation formalism. ~5~ When fluctuations are neglected for 
species which are held fixed in the Lotka-Volterra  model, an unbounded 
growth of the fluctuations is obtained. To examine the reason for this diver- 
gence, an extension of the Lotka-Volterra  model is introduced. In the ex- 
tended model an external source term is explicitly added to the kinetic 
equations in order to fix the concentration of species held in excess. In this 
extended model, the equations satisfied by the conditionally averaged con- 
centrations are i den t i ca l  to those in the Lotka-Volterra  model. Thus the 
average behavior is stable and the temporal oscillations are identical to those 
found in the Lotka-Volterra  model. However, using the generalized 
fluctuation-dissipation principles, the equations satisfied by the fluctuations 
are substantially different from those which are found when fluctuations in 
the externally fixed variables are ignored. Indeed the fluctuations in this ex- 
tended model are easily shown to be bounded. This demonstrates the impor- 
tance of considering the effect of  fluctuations in all variables and shows that 
special care should be used in treating fluctuations far from equilibrium. 

2. F L U C T U A T I O N S  IN THE L O T K A - V O L T E R R A  M O D E L  
W I T H  BATH M O L E C U L E S  NEGLECTED 

The mechanism for the Lotka-Volterra  model involves three irreversible 
elementary reactions: 

E + C~ = 2C1 (1) 

C1 + C2 = 2C~ (2) 

Ca = G (3) 

In this mechanism the concentrations of the bath molecules E and G are 
supposed to be fixed, the forward rate constants are kl ,  k2, and k3, and the 
rate constants of  the back reactions are taken to be zero. It is easily verified 
that these reactions are linearly dependent, but that the concentrations of the 
molecules C1 and C2 are independent variables. Thus the generalized 
fluctuation-dissipation principles <4'5~ for describing concentration fluctuations 
are easily applied. These principles associate a conditional probability with 
transport  equations, and according to the first principle the conditionally 
averaged concentrations satisfy the phenomenological rate laws. For this 
model the rate law is 

d ~ l / d t  = k i E ~  - k 2 ~ 2 ,  d~2/d t  = k 2 ~  - k3~2 (4) 

where ~ and n2 are the average concentrations conditioned on the precise 
values n~ ~ and n2 ~ at t = 0 and E represents the fixed concentration of the 
molecule E. In treating fluctuations in this way, the common point of  view (2'3~ 
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has been adopted that the concentrations of the bath molecules E and G are 
parameters, not variables, of the system. Thus they do not fluctuate. This is 
not the only possible point of view, and a more complete treatment is given 
below. The second fluctuation-dissipation principle describes the deviations 
from the conditional averages, 3n = n - n, which are supposed to satisfy a 
linearized version of Eq. (4): 

d3n/dt = H(n ~ t) 3n + f(t) (5) 

where H(n ~ t) is the matrix 

( k l E  - ~ t) -k2 1(. ~ t) 
H(n ~ t) = \ k2t72(n ~ t) k2ff~(n ~ t) - ka] (6) 

and f ( t )  is a nonstationary Gaussian process whose average vanishes and 
whose covariance matrix is 

(f(t)f(s) z) = 7,(n ~ t) ~(t - s) (7) 

with 

7'(n ~ t) 
{k~E~(n ~ t )+  k2~(n ~ t)~2(n ~ t) 

V- 
- k 2 ~ ( n  ~ , t)~2(n ~ t) 

-k2t71(n ~ t)~z(n ~ , t) 
! 

k2~l(n ~ t)~2(n ~ t )+  ka~2(n ~ t)] 

(8) 

In Eq. (8), V is the volume. Equations (4)-(8) produce a Gaussian conditional 
probability density P2(n~ and can be used to predict the future probability 
distribution in an ensemble. For example, if the concentrations nl and n2 are 
originally distributed with the density Wl(n, 0), then at a time t later the 
probability density will be 

Wl(n, t) = f Wl(n ~ 0)P2(n~ dn~ (9) 

The difficulty in treating fluctuations resulting from coupled nonlinear 
reactions is apparent in the expressions for H and 7' since the solutions to the 
nonlinear average equations, Eq. (4), for arbitrary initial condition n o are 
required. Even for as simple a case as the Lotka-Volterra model, no analytical 
solutions are known, except close to the steady state. This steady state is at 
n] ~ = ka/k2, n Ss2 = Ekl/k2 and the solutions to the average equation are 
closed trajectories around the steady state. For initial values n ~ close to n s~ 
the solutions are approximately circular trajectories moving counterclockwise 
in the (nl, n2) plane. Because of the simplicity of these trajectories, attention 
is restricted to initial ensembles which are close to the steady state. According 
to Eq. (9), the conditional probability density P2(n~ can be used to predict 
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the future behavior in this ensemble. However, since the steady state is 
stable and the initial distribution W(n ~ 0) is sharply peaked around it, one has 

W~(n, t) = f W~(n ~ O)P2(n~ dn ~ P2(n~lnt) (10) 

Thus the approximate future behavior of the ensemble can be determined by 
evaluating the conditional probability density solely at the initial steady 
state. This is done by setting n o = n s~ in Eqs. (4)-(8) and gives 

fi(n s~, t) = n ~, d3n/dt = H(n ~) 3n + f(t) (11) 

with the time-independent matrices 

= = A (12) 
kzE 

and 

~ ' ( n s s )  = v ~ 2  - 

It is easily verified that ~,(n s~) is positive definite and that the eigenvalues of 
A are A~ = + ico, co = (kaklE) 1/2. The conditional probability is 

P2(n~lnt) = [(2rr) 2 det ~(nS~)]-lj2 exp[--}(n - nSS)r~ - l (n~ ,  t)(n - nSS)] 

with 

~(n ~, t) = exp[A(t - s)] 7(n ~) exp[Ar(t - s)] ds (14) 

The covariance matrix cr(n ~, t) is obtained using the representation 

exp(At) = I cos ~ot + A sin oJt 

which leads to 

~(n s s , t )  = ~  _ 1  2 (cos oJt sin cot + t) 

1 ( ka klE - ka'~ sin2 
+ ~ \ k l E -  k3 - k l E  ] 

cot 

+ ~ 2klE/ka (t - cos oat sin oat) (15) 

The oscillatory terms are a consequence of the fact that the eigenvalues of A 
are pure imaginary. It is clear from Eq. (15) that as time proceeds there is a 
linear divergence of the variance of nl and n2. Thus when only fluctuations in 
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C~ and Cz are considered the present formalism predicts that the Lotka-  
Volterra model--while stable to macroscopic deviations--is unstable to 
microscopic fluctuations. That is to say, the noise level soon obscures the 
average behavior. This is closely connected to the fact that the eigenvalues of 
A are pure imaginary and should not occur for models in which the oscillations 
are due to a stable limit cycle. 

3. I N C L U S I O N  OF F L U C T U A T I O N S  FOR BATH M O L E C U L E S  

The treatment of  fluctuations in the preceding section is based on the 
assumption that the concentration of the reactant E does not fluctuate. This 
certainly cannot be correct since E is constantly reacting with C1. In fact to 
keep the amount of E fixed, an external source--which just balances the 
depletion of E by reaction (1)--must be added to the system. Hence the 
complete average equations should be 

dE/dt = -klF,~l + K(t) - 0 

dgl/dt = k~F,~ - k2~gz (16) 

d~z/dt = k2~1~2 - kaY2 

The external source term is K(t) and by varying its strength the constant 
average concentration E can be changed, since E = K(t ) / k~( t ) .  In this 
extended Lotka-Volterra model the average concentration of E is fixed and 
so the time dependence of ~ (n  ~ t) and ~z(n ~ t) will be precisely the same as 
in the usual model described by Eq. (4). However, spontaneous deviations in 
the concentration of  E may now be easily included. Restricting attention 
again to distributions which are sharply peaked around the steady state 
n ~ =  (E, k3/k2, Eke/k2), the deviations from the average concentrations, 
8n - (3E, ~nl, 3n2), obey 

dSn/dt = A' 3n + f(t) (17) 

where the external source term does not appear (4~ since only dissipative 
events contribute to the fluctuations. The matrix A' is found from Eq. (16), 

[-k k /k2 -kiE 0 ) 
A'= / 0 -k3 (lS) 

klE 0 

and the covariance matrix of the random terms f(t) is (5~ 

klkaE ( 
~" Vk2 1 2 - (19) 

0 - 1  
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Again ~,' is a positive-definite matrix. For initial distributions sharply 
peaked around the steady state, Eq. (10) can be applied. Such a distribution 
can be approximated by the Gaussian distribution P2(nS~lnt) with fixed 
average value n S~ and a covariance matrix whose time dependence is given 
by 

a(n S~, t) = exp[A'(t - s)] ~,' exp[A'r(t  - s)] ds 

An explicit expression for o(n sS, t) may be found using the same methods 
which were employed in obtaining Eq. (15). In particular, since the Rou th -  
Hurwitz criterion (6~ shows that all the eigenvalues of  A' have negative real 
parts, it follows that covariance matrix  converges to a f inite limit as time 
proceeds. The exact time dependence of  the matrix elements has been evalu- 
ated for arbitrary ka and E when kl = k2 = 1, and representative results are 
shown in Fig. 1. For values of the parameter  E/ka between 1 and 1000 the 
imaginary parts of  the eigenvalues of  A' produce oscillations in the covariance 
matrix, which are damped by the real part  of the eigenvalues as time proceeds. 
Thus fluctuations, which grew in an unbounded way when E was treated as a 
parameter,  become bounded when E is allowed to fluctuate ! This points out 
the importance of including all the physical variables when treating spon- 
taneous fluctuations and shows that far from equilibrium, fluctuations in one 
variable may drastically effect those in another. 
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Fig. 1. The time dependence of the variance of 
n~ for the extended Lotka-Volterra model for 
several values of r = Elk3 when kl = k2 = 1. 
The ordinate represents V((3n~)2)/E and the 
abscissa is the scaled time r = k3t/3. The 
shapes of the curves are representative of the 
time dependence of all the matrix elements, 
although the magnitude of the curves for 
V((~E)2)/E and V(3E ~n2)/E, for example, is 
an increasing function of r. 
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